Sunday, March 28, 2010

The Abiogenesis of Rock Oil

The evolution of multicomponent systems at high pressures



Proceedings of the National Academy of Sciences of the United States of America

"The spontaneous genesis of hydrocarbons that comprise natural petroleum have been analyzed by chemical thermodynamic-stability theory. The constraints imposed on chemical evolution by the second law of thermodynamics are briefly reviewed, and the effective prohibition of transformation, in the regime of temperatures and pressures characteristic of the near-surface crust of the Earth, of biological molecules into hydrocarbon molecules heavier than methane is recognized. For the theoretical analysis of this phenomenon, a general, first-principles equation of state has been developed by extending scaled particle theory and by using the technique of the factored partition function of the simplified perturbed hard-chain theory. The chemical potentials and the respective thermodynamic Affinity have been calculated for typical components of the H–C system over a range of pressures between 1 and 100 kbar (1 kbar = 100 MPa) and at temperatures consistent with those of the depths of the Earth at such pressures. The theoretical analyses establish that the normal alkanes, the homologous hydrocarbon group of lowest chemical potential, evolve only at pressures greater than ≈30 kbar, excepting only the lightest, methane. The pressure of 30 kbar corresponds to depths of ≈100 km. For experimental verification of the predictions of the theoretical analysis, a special high-pressure apparatus has been designed that permits investigations at pressures to 50 kbar and temperatures to 1,500°C and also allows rapid cooling while maintaining high pressures.

Rift Zones: New Understanding Of Incredible Forces, Oil And Gas Reserves Beneath The Earth’s Surface
ScienceDaily (Feb. 12, 2009)

Rift zones are also important for oil exploration as many oil rich areas have arisen as a result of rift processes. This is true, for example, of the area around the Central Graben in the North Sea which is a former rift zone whose development halted. The Central Graben is the location where the countries bordering the North Sea obtain most of their oil. It is therefore important to understand the processes that lead to rift formation, as it may give us an opportunity to pump more oil up from underground.

Finding New Oil In Long-Exhausted Oil Wells

ScienceDaily (Feb. 3, 2008) — Under contemporary conditions, it is more economically sound not to look for new oil fields but to overhaul old ones. Oil reappears from time to time in old deposits and long ago exhausted oil wells.

Fossils From Animals And Plants Are Not Necessary For Crude Oil And Natural Gas, Swedish Researchers Find

ScienceDaily (Sep. 12, 2009) — Researchers at the Royal Institute of Technology (KTH) in Stockholm have managed to prove that fossils from animals and plants are not necessary for crude oil and natural gas to be generated. The findings are revolutionary since this means, on the one hand, that it will be much easier to find these sources of energy and, on the other hand, that they can be found all over the globe.

“Using our research we can even say where oil could be found in Sweden,” says Vladimir Kutcherov, a professor at the Division of Energy Technology at KTH.

Together with two research colleagues, Vladimir Kutcherov has simulated the process involving pressure and heat that occurs naturally in the inner layers of the earth, the process that generates hydrocarbon, the primary component in oil and natural gas.

According to Vladimir Kutcherov, the findings are a clear indication that the oil supply is not about to end, which researchers and experts in the field have long feared.

He adds that there is no way that fossil oil, with the help of gravity or other forces, could have seeped down to a depth of 10.5 kilometers in the state of Texas, for example, which is rich in oil deposits. As Vladimir Kutcherov sees it, this is further proof, alongside his own research findings, of the genesis of these energy sources – that they can be created in other ways than via fossils. This has long been a matter of lively discussion among scientists.

“There is no doubt that our research proves that crude oil and natural gas are generated without the involvement of fossils. All types of bedrock can serve as reservoirs of oil,” says Vladimir Kutcherov, who adds that this is true of land areas that have not yet been prospected for these energy sources.

Methane Rain Formed New Lake on Saturn Moon

National Geographic, via NASA

an oily, thick, flammable, usually dark-colored liquid that is a form of bitumen or a mixture of various hydrocarbons, occurring naturally in various parts of the world and commonly obtained by drilling: used in a natural or refined state as fuel, or separated by distillation into gasoline, naphtha, benzene, kerosene, paraffin, etc.

1520–30; < rock oil, equiv. to L petr(a) [rock] + oleum [oil]


Comments: Post a Comment